

# **SMART ICT BY PROMIK**

Digital in-circuit/functional testing



### STRUCTURE

- 1. Today's Challenges
- 2. Production Concept
- 3. System Overview
- 4. Toolbox Overview
  - Software Hardware
- 5. Use Cases
  - Low Current Measurement
  - Test of CAN-FD Communication Interface
- 6. SMART ICT Functions
- 7. Benefits





## ProMik SMART ICT

Changes in complexity and structure of modern application require innovative adaptation

#### Reliable supply chain

- No need for tests of component correctness
- $\rightarrow$  Higher quality standards of incoming.

components

• Soldering as well as part detection test via AOI.

#### Application trends

Changing requirements/technologies have various effects on the development of applications:

- Smaller PCB size
- Decreasing number of test points
- Changing process compatibility e.g. limited X-Ray tests



#### Cost and time pressure

Global competition and decreasing prices lead to the need to reduce costs:

- Parallel tests help to reduce cycle times and increase productivity
- Improve test coverage





## SMART ICT Conventional Production Concept

Conventional production sequence:

- ICT, Flashing and FCT as separated process steps
- Unbalanced process steps

#### Schematic process





## SMART ICT Integrating ICT and FCT into the flash process

SMART ICT production sequence:

- Smart ICT increasingly replaces ICT and FCT
- Reduced cycle times due to parallel tests
- Balanced process steps

#### Schematic process





#### System Overview





## ProMik SMART ICT System Overview

Exemplary block diagram of NXP Power PC MCU:

(Green frames indicate testable components) \*\*\*\*\*\*\*\* Safety Checker Debug **JTAG** S-FPU S-FPU FlexRay CAN-FD Ethernet SPI HANNA MANA **Crossbar Switch Memory Protection Unit** Flash SRAM Control External Control I/O Bridge Memory Flash SRAM Interface Memory Memory

Internal Device Structure





#### **Toolbox Overview**



8



### ProMik SMART ICT Toolbox Overview





## ProMik SMART ICT Software: Scripting Language





#### **SMART ICT Functions**



### ProMik SMART ICT Function Overview



#### Generic ProMik SMART ICT libraries

- → Contain device specific modules
- → Intuitive function selection allows project specific SMART ICT sequence configuration

#### Examples of ProMik SMART ICT functions

- → Application power-up sequence
- → Voltage level measurement and current (Run, sleep) consumption monitoring
- → Low current measurement (Project specific ProMik hardware necessary)
- → Peripheral device and component tests
- → Peripheral tests (I/O, AD, PWM ...)
- → Direct and indirect tests of glue logic elements
- → Fieldbus communication and interface tests
- → Direct and indirect functional tests
- → Test of actuators (Project specific ProMik hardware necessary)
- → Supporting high speed Boundary Scan





## ProMik SMART ICT Toolbox: Example Hardware Modules

| SMART ICT Module                    | Description                                                                                               |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Power Control Current Sensor (PCCS) | To measure current consumption in μA / mA ranges<br>(perfectly suited for run-/sleep current measurement) |
| Galvanic Isolation Module           | Separates electric circuits physically in order to avoid influences on flash signals                      |
| Power Sequencer Box                 | Powers up the application in a certain sequence                                                           |
| Frequency Measurement Module        | Measures signal frequency                                                                                 |
| Level Shifter                       | Adjusts voltages accordingly<br>Multiplies LIN signals                                                    |
| Watchdog Trigger                    | Triggers watchdog to avoid the device to shut down                                                        |
| PSU2048                             | 4 independent output channels<br>4-50V / 4A / 50 Watts per output                                         |
| Fuse Charge Pump                    | Sets fuses of Programmable Devices                                                                        |
|                                     |                                                                                                           |



#### Use Cases

05.06.2020





### ProMik SMART ICT Use Case: PCCS Module + LIN Multiplexer





### **ProMik SMART ICT** Use Case: Test of CAN-FD Communication Interface





#### **Benefits**







### ProMik SMART ICT Benefits

Ideally suited for small applications with less or without test pads

- Using target device flash interface
- Parallel access on panel level
- e.g. camera applications, key applications, sensors

Dynamic control of generic library

- Test engineer has full control over test routines, allowing dynamic test coverage
- Flexible use for various applications
- Configurable I/O lines, interface channels & routines, analogue functions, etc.



## **ProMik SMART ICT** Benefits

Costs saving potential



Increased output rate



Hardware cost reduction



Labor cost reduction

↓ ĨL

Floor space reduction



Cost-effective upgrade for ProMik FlashTask Pro



Lower process complexity

Reduced und balanced cycle times



Early identification of defective parts

